Risk-modeling in Asset Management
Maintenance Strategies

Rui Jorge Almeida
BISS Institute
Towards Future Proof Asset Management Systems
Asset Management

- Asset management is a systematic approach of developing, **operating, maintaining, upgrading**, and disposing of assets
 - Objective of providing the best value level of service for the costs involved;
 - Optimization of **costs, risks, service/performance** and sustainability.
Asset Management

• Asset management is a systematic approach of developing, operating, maintaining, upgrading, and disposing of assets
 • Objective of providing the best value level of service for the costs involved;
 • Optimization of costs, risks, service/performance and sustainability.

• In Finance, models are backbone of asset management:
 • models are used in investment, portfolio management, risk management, and finance functions.
Maintenance

• Maintenance is defined as a set of activities or tasks used to restore an item to a state in which it can perform its designated functions.
Maintenance

- Maintenance is defined as a set of activities or tasks used to restore an item to a state in which it can perform its designated functions.

- Downtime reduces production, increases operating costs and interferes with customer services.
 - Nowadays, effects of downtime are being aggravated by the move towards just-in-time systems.
Maintenance

- Maintenance is defined as a set of activities or tasks used to restore an item to a state in which it can perform its designated functions.

- Downtime reduces production, increases operating costs and interferes with customer services.
 - Nowadays, effects of downtime are being aggravated by the move towards just-in-time systems.

- Small, unmanaged breakdowns, can potentially stop a whole plant.
Maintenance Strategies

First Generation
- Fix it when it broke
- Basic and Routine maintenance
- Corrective maintenance

Second Generation
- Planned preventive maintenance
- Time based maintenance
- Systems for planning and controlling work

Third Generation
- Condition based maintenance
- Reliability centered maintenance
- Workforce multi-skilling and teamworking
- Proactive and strategic

Recent Generation
- Risk based inspection
- Risk based maintenance
- Reliability centered maintenance
- Condition based monitoring
- Computer aided maintenance management and information system

Source: [Cooke, 2003, Arunraj and Maiti, 2007]
Maintenance Strategies

First Generation
- Fix it when it broke
- Basic and Routine maintenance
- Corrective maintenance

Second Generation
- Planned preventive maintenance
- Time based maintenance
- Systems for planning and controlling work

Third Generation
- Condition based maintenance
- Reliability centered maintenance
- Workforce multi-skilling and teamworking
- Proactive and strategic

Recent Generation
- Risk based inspection
- Risk based maintenance
- Reliability centered maintenance
- Condition based monitoring
- Computer aided maintenance management and information system

Source: [Cooke, 2003, Arunraj and Maiti, 2007]
Maintenance Strategies

<table>
<thead>
<tr>
<th>First Generation</th>
<th>Second Generation</th>
<th>Third Generation</th>
<th>Recent Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix it when it broke</td>
<td>Planned preventive maintenance</td>
<td>Condition based maintenance</td>
<td>Risk based inspection</td>
</tr>
<tr>
<td>Basic and Routine maintenance</td>
<td>Time based maintenance</td>
<td>Reliability centered maintenance</td>
<td>Risk based maintenance</td>
</tr>
<tr>
<td>Corrective maintenance</td>
<td>Systems for planning and controlling work</td>
<td>Workforce multi-skilling and teamworking</td>
<td>Reliability centered maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proactive and strategic</td>
<td>Condition based monitoring</td>
</tr>
<tr>
<td>1940</td>
<td>1950</td>
<td>1960</td>
<td>1970</td>
</tr>
<tr>
<td>1980</td>
<td>1990</td>
<td>2000</td>
<td>Present</td>
</tr>
</tbody>
</table>

Source: [Cooke, 2003, Arunraj and Maiti, 2007]
Maintenance Strategies

<table>
<thead>
<tr>
<th>First Generation</th>
<th>Second Generation</th>
<th>Third Generation</th>
<th>Recent Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix it when it broke</td>
<td>Planned preventive maintenance</td>
<td>Condition based maintenance</td>
<td>Risk based inspection</td>
</tr>
<tr>
<td>Basic and Routine maintenance</td>
<td>Time based maintenance</td>
<td>Reliability centered maintenance</td>
<td>Risk based maintenance</td>
</tr>
<tr>
<td>Corrective maintenance</td>
<td>Systems for planning and controlling work</td>
<td>Workforce multi-skilling and teamworking</td>
<td>Reliability centered maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proactive and strategic</td>
<td>Condition based monitoring</td>
</tr>
</tbody>
</table>

Source: [Cooke, 2003, Arunraj and Maiti, 2007]
Maintenance Strategies

<table>
<thead>
<tr>
<th>First Generation</th>
<th>Second Generation</th>
<th>Third Generation</th>
<th>Recent Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Fix it when it broke</td>
<td>- Planned preventive maintenance</td>
<td>- Condition based maintenance</td>
<td>- Risk based inspection</td>
</tr>
<tr>
<td>- Basic and Routine maintenance</td>
<td>- Time based maintenance</td>
<td>- Reliability centered maintenance</td>
<td>- Risk based maintenance</td>
</tr>
<tr>
<td>- Corrective maintenance</td>
<td>- Systems for planning and controlling work</td>
<td>- Reliability centered maintenance</td>
<td>- Reliability centered maintenance</td>
</tr>
</tbody>
</table>

|------|------|------|------|------|------|------|---------|

Source: [Cooke, 2003, Arunraj and Maiti, 2007]
Risk - Definition

- The risk for an asset i at time t, combines the failure probability \mathbb{P}_i in any instant $t_f \leq t$ and consequence losses L_i

$$R_i(t) = \mathbb{P}_i(t_f \leq t)L_i$$
Risk - Definition

- The risk for an asset i at time t, combines the failure probability \mathbb{P}_i in any instant $t_f \leq t$ and consequence losses L_i

$$R_i(t) = \mathbb{P}_i(t_f \leq t)L_i$$

- The probability of failure is related to the age of the asset:
Risk - Definition

- The risk for an asset i at time t, combines the failure probability \mathbb{P}_i in any instant $t_f \leq t$ and consequence losses L_i

$$R_i(t) = \mathbb{P}_i(t_f \leq t)L_i$$

- The consequence losses should take into account different factors:
 - Repair costs;
 - Downtime costs and slowdown costs (production loss);
 - Safety hazards and possible accidents.
Risk-Based Maintenance

- Risk-based maintenance (RBM) is used for determining the priority of maintenance using risk which integrates both safety and failure,
 - find the critical/problem assets and dedicate your maintenance resources to them while diverting resources from noncritical assets.

[Lei et al., 2015]
Risk-Based Maintenance

• Risk-based maintenance (RBM) is used for determining the priority of maintenance using risk which integrates both safety and failure,
 • find the critical/problem assets and dedicate your maintenance resources to them while diverting resources from noncritical assets.

• In offshore steel structures, the application of RBM translated in savings over 80% on total repair costs! [Lei et al., 2015]
Risk-Based Approach

Source: [Arunraj and Maiti, 2010]
Risk-Assessment

Start

Divide the system into manageable units

Consider a unit

Hazard analysis

Likelihood estimation

Consequence estimation

Risk evaluation

YES

Maintenance planning
Risk Maintenance Planning

1. Identify high, medium, and low risk units
2. Is risk acceptable?
 - YES
 - NO
 - Is there any other unit?
 - YES
 - NO
 - Stop
 - NO
 - Stop
Choosing the Correct Maintenance

GOAL
Maintenance policy selection

OCCURRENCE
Corrective maintenance

SEVERITY
Preventive maintenance

DETECTABILITY
Predictive maintenance

Source: [Bertolini and Bevilacqua, 2006]
Application: Power-generating unit

- Focus in a power-generating unit in an operating steam power plant [Krishnasamy et al., 2005].

- A steam power plant is a means for converting the potential chemical energy of fuel into electrical energy.
 - In its simplest form, it consists of a boiler and a turbine driving an electrical generator.
Application: Methodology

Identification of the Scope
- Identifying subsystem and components
- Defining relationship among components, subsystem and the main system
- Collection of failure data and defining failure model

Risk Assessment
- Hazard identification
- Probabilistic failure analysis
- Consequence assessment
- Risk quantification

Risk Evaluation
- Selecting risk acceptance criteria
- Comparison of assessed risk against acceptable criteria

Maintenance Planning
- Development of maintenance plan to reduce the unacceptable risk to acceptable level
Application: Unit 3 scope

- **System**: Power plant (Unit 3)
 - **SubSystems**:
 - Steam generator
 - Furnace
 - Economizer
 - Steam drum
 - Super heater
 - Re-heater
 - Blow down system
 - Chemical supply system
 - Forced draft fan east & west
 - Steam air heater east & west
 - Air preheater east & west
 - Air flow control system east & west
 - Flue gas system
 - Air and flue gas system
 - Heavy oil system
 - Light oil system
 - Fuel additive system
 - Turbine
 - Turbine- steam supply system
 - Turbine- rotating system
 - Generator
 - Rotating system
 - Hydrogen supply system
 - Seal oil supply system
 - Vacuum system
 - Cooling water supply system
 - Screen washing system
 - Condenser back wash
 - Condenser
 - Water extraction pumps
 - Gland seal condenser
 - LP feed water heaters
 - Reserve feed water system
 - Water de-mineralization system
 - Chemical supply system
 - Low Pressure (LP) feed water system
 - High Pressure (HP) feed water system
 - De-aerator
 - HP feed water heaters
 - Feed water auxiliaries
 - HP feed water pumps
 - Compressors
 - Air supply system
Application: Risk assessment

- Fault tree analysis

```
Failed to generate and supply power

Failed to generate steam
  - Steam generator failed 1
  - Instrument and service air system failed 3

Failed to supply water
  - Condenser failed 5
  - LP water system failed 7

Failed to generate power
  - Turbine steam supply failed

Failed to start boiler
  - Generator failed 10
  - No fuel supply 11
  - No water supply 13
```

- Air and flue gas system failed 2
 - Fuel oil system failed 4
 - HP water system failed 6
 - Turbine failed 9
 - No air supply 12
Application: Risk and rank analysis

- The risk index is the actual risk divided by the acceptable risk (historically $2,000,000).

<table>
<thead>
<tr>
<th>Rank</th>
<th>Major system</th>
<th>Consequence in millions</th>
<th>Probability of failure over 20 years</th>
<th>Risk ($) over 20 years</th>
<th>Risk index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Steam generator</td>
<td>3,678,481</td>
<td>0.9989</td>
<td>3,674,435</td>
<td>1.837</td>
</tr>
<tr>
<td>2</td>
<td>High pressure feed water system</td>
<td>2,478,842</td>
<td>0.9999</td>
<td>2,478,594</td>
<td>1.239</td>
</tr>
<tr>
<td>3</td>
<td>Air and flue gas system</td>
<td>2,102,023</td>
<td>0.9914</td>
<td>2,083,946</td>
<td>1.042</td>
</tr>
<tr>
<td>4</td>
<td>Generator</td>
<td>1,634,060</td>
<td>0.9780</td>
<td>1,598,111</td>
<td>0.799</td>
</tr>
<tr>
<td>5</td>
<td>Turbine-steam supply</td>
<td>1,110,574</td>
<td>0.9999</td>
<td>1,110,463</td>
<td>0.555</td>
</tr>
<tr>
<td>6</td>
<td>Fuel oil system</td>
<td>1,110,574</td>
<td>0.9866</td>
<td>1,095,692</td>
<td>0.548</td>
</tr>
<tr>
<td>7</td>
<td>Condenser</td>
<td>874,745</td>
<td>0.9939</td>
<td>869,409</td>
<td>0.403</td>
</tr>
<tr>
<td>8</td>
<td>Turbine rotating system</td>
<td>302,053</td>
<td>0.9999</td>
<td>302,023</td>
<td>0.151</td>
</tr>
<tr>
<td>9</td>
<td>Low pressure feed water system</td>
<td>286,584</td>
<td>0.9995</td>
<td>286,441</td>
<td>0.143</td>
</tr>
<tr>
<td>10</td>
<td>Instrument and service air system</td>
<td>25,249</td>
<td>0.9650</td>
<td>24,365</td>
<td>0.012</td>
</tr>
</tbody>
</table>
Application: Risk and rank analysis

- The risk index is the actual risk divided by the acceptable risk (historically $2,000,000).

<table>
<thead>
<tr>
<th>Rank</th>
<th>Major system</th>
<th>Consequence in millions</th>
<th>Probability of failure over 20 years</th>
<th>Risk ($) over 20 years</th>
<th>Risk index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Steam generator</td>
<td>3,678,481</td>
<td>0.9989</td>
<td>3,674,435</td>
<td>1.837</td>
</tr>
<tr>
<td>2</td>
<td>High pressure feed water system</td>
<td>2,478,842</td>
<td>0.9999</td>
<td>2,478,594</td>
<td>1.239</td>
</tr>
<tr>
<td>3</td>
<td>Air and flue gas system</td>
<td>2,102,023</td>
<td>0.9914</td>
<td>2,083,946</td>
<td>1.042</td>
</tr>
<tr>
<td>4</td>
<td>Generator</td>
<td>1,634,060</td>
<td>0.9780</td>
<td>1,598,111</td>
<td>0.799</td>
</tr>
<tr>
<td>5</td>
<td>Turbine-steam supply</td>
<td>1,110,574</td>
<td>0.9999</td>
<td>1,110,463</td>
<td>0.555</td>
</tr>
<tr>
<td>6</td>
<td>Fuel oil system</td>
<td>1,110,574</td>
<td>0.9866</td>
<td>1,095,692</td>
<td>0.548</td>
</tr>
<tr>
<td>7</td>
<td>Condenser</td>
<td>874,745</td>
<td>0.9939</td>
<td>869,409</td>
<td>0.403</td>
</tr>
<tr>
<td>8</td>
<td>Turbine rotating system</td>
<td>302,053</td>
<td>0.9999</td>
<td>302,023</td>
<td>0.151</td>
</tr>
<tr>
<td>9</td>
<td>Low pressure feed water system</td>
<td>286,584</td>
<td>0.9995</td>
<td>286,441</td>
<td>0.143</td>
</tr>
<tr>
<td>10</td>
<td>Instrument and service air system</td>
<td>25,249</td>
<td>0.9650</td>
<td>24,365</td>
<td>0.012</td>
</tr>
</tbody>
</table>
Application: Risk analysis subsystems

<table>
<thead>
<tr>
<th>Rank</th>
<th>Subsystems</th>
<th>Risk value $</th>
<th>Risk index</th>
<th>Level of concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Air preheater east</td>
<td>2,045,058</td>
<td>1.0225</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>Forced draft fan east</td>
<td>1,444,656</td>
<td>0.7278</td>
<td>Medium</td>
</tr>
<tr>
<td>3</td>
<td>Forced draft fan west</td>
<td>1,333,840</td>
<td>0.6669</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Heavy oil system</td>
<td>1,109,352</td>
<td>0.5547</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Re-heater</td>
<td>1,107,242</td>
<td>0.5536</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Super heater</td>
<td>1,102,245</td>
<td>0.5511</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Furnace</td>
<td>918,590</td>
<td>0.4593</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Air preheater west</td>
<td>270,734</td>
<td>0.1354</td>
<td>Low</td>
</tr>
<tr>
<td>9</td>
<td>Flue gas system</td>
<td>123,272</td>
<td>0.0616</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Air flow control system west and east</td>
<td>108,783</td>
<td>0.0544</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Air flow control system east</td>
<td>108,783</td>
<td>0.0544</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Steam air heater west and east</td>
<td>108,658</td>
<td>0.0543</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Steam air heater west and east</td>
<td>108,658</td>
<td>0.0543</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Reserve feed water system</td>
<td>7192</td>
<td>0.0036</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Gland seal condenser</td>
<td>7165</td>
<td>0.0036</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Water demineralization system</td>
<td>6894</td>
<td>0.0034</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Condenser back wash</td>
<td>2982</td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Chemical supply system</td>
<td>2338</td>
<td>0.0016</td>
<td></td>
</tr>
</tbody>
</table>
Application: Risk reduction results

- Preventive maintenance: Model based approach to reduce risk.

<table>
<thead>
<tr>
<th>No</th>
<th>Subsystem</th>
<th>Initial risk factor ($)</th>
<th>Target probability</th>
<th>Risk reduction in dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Steam generator</td>
<td>3,674,434</td>
<td>0.54</td>
<td>1,984,194</td>
</tr>
<tr>
<td>2</td>
<td>Air and flue gas system</td>
<td>2,083,945</td>
<td>0.85</td>
<td>1,771,353</td>
</tr>
<tr>
<td>3</td>
<td>HP feed water system</td>
<td>2,478,594</td>
<td>0.80</td>
<td>1,982,875</td>
</tr>
</tbody>
</table>
Risk-modeling in asset management

Thank you for listening
Risk-modeling in asset management

Thank you for listening

Looking forward to discuss this topic on

11 June
References I

